

(Urakawa et al. 2018 おとといsubmit)

浦川聖太郎¹,大澤 亮²,酒向重行²,奥村 真一郎¹,櫻井 友里³,高橋 隼⁴,今 村 和義⁵,内藤 博之⁶,岡崎 良⁷,関口 朋彦⁷,石黒 正晃⁸,道上 達広⁹ 吉川 真¹⁰

¹日本スペースガード協会,²東京大学,³岡山大学,⁴兵庫県立大学,⁵阿南市立科学 センター,⁶なよろ市立天文台,⁷北海道教育大学,⁸ソウル大学,⁹近畿大学,¹⁰JAXA

ここがポイント!

- ▶ 地球接近天体2012 TC₄(以下TC4)を観測
 ▲ 高速で歳差回転をしている小さな小惑星
- ▲ 自転周期: 8.47分 歳差周期: 12.25 分
- ▲ 直径: 6 20 m
- ▲ 木曽観測所のCMOSカメラ「Tomo-e Gozen」は、地球接近天体の観測にとても有効
- ▲ パンケーキのような形。衝突破片であろう。
- ▲ 3軸比から穏やかな衝突(Impact cratering)/激しい衝突(Catastrophic disruption)を推定できるかも

地球接近天体 2012 TC₄

- ▲ 2012年にPan-STARRsで発見
- ▲ 2012年における最接近距離:95,000 km
- ▲ 2012年における推定直径: 7 34 m (Polishook 2013)
- ▲ 2012年における自転周期: 12.24 分(Polishook 2013)
- ▲ 2017年に再び接近。最接近距離50,000 km(10月12日)

ラブルパイルと一枚岩

©JAXA,東京大、高知大、立教大、名古屋大、千葉工大、明治大、 会津大、産総研

世や

/

破

10m

The second

ライトカーブ(可視測光)

(写真:東京大学、阿南市立科学館、なよ ろ市立天文台、兵庫県立大学)

木曽 1.05 m + Tomo-e Gozen カメラ 美星スペースガードセンター(BSGC) 1.0 m 阿南市立科学センター 1.13 m なよろ市立天文台 0.4 m

• 可視多色測光(g['], r['], i['], z['] band) 美星スペースガードセンター 1.0 m

近赤外多色測光(*J, H, K_s* band)
 西はりま天文台なゆた望遠鏡 2.0 m
 + NIC(近赤外3色同時カメラ)

Extremely wide-field CMOS camera The Tomo-e Gozen

- 望遠鏡
 木曽1.05 mシュミット望遠鏡
- 視野 直径で9度。20平方度
- センサー Canon CMOS x 21x 4モジュール
- 完成予定
 2019年初め頃
- フレームレート2フレーム/秒 = 0.5 秒積分

トモエゴゼンの短時間読み出し能力は高速で天球上を移 動し、なおかつ高速自転している地球接近天体の観測に とても適している。

発見数世界一を目指した地球接近天体サーベイも計画中 (奥村さんのP32ポスター、最後の昼休みに見てください)

 $\begin{array}{c} 35 \text{ mm full HD, } 1k \times 2k \text{ pix}^2, \\ 84 \text{ chips} \end{array}$

Tomo-e Gozenによる**TC**4の動画 光度変動を視認できる時代へ

周期解析

0

Phase of combined period (110.18 min) 1.0

反射スペクトルタイプと直径

反射スペクトルタイプ: X-type

直径: 6-20 m (X-type albedo: 0.098, Usui+ 2013)

形状と運動モデル

形状と回転状態

カサライネンモデルと同様、三軸比の唯一解は得られない (リュウグウの自転軸が観測から求めるのが困難であったことと同様)

代表的なモデル(モデル4)

CGモデルから人工的なライト カーブ

Figure 4. Artifical lightcurves of 2012 TC_4 in model 1, 3, 4, and 6.

Phase of combined period (110.18 min) 1.0

まとめと議論

♦ 2012 TC ▲ 自転周期 径: 6 - 20 m ♦ モデル3 ▲ モデル4 衝突実験 軸比と類似 Impact cr on(激しい衝突) (短軸/長軸 => 低) (Michikami et al. 2016) モデル3:Impact cratering!? TC4は衝突現象で発生

した破片だろう。

モデル4:Catastrophic disruption !?

まとめと議論

- ♦ 2012 TC₄ はタンブリング小惑星
- ▲ 自転周期: 8.47 分, 歳差周期: 12.25 分, X-type, 直径: 6 20 m
- ▲ モデル3(中間軸/長軸=0.54,短軸/長軸=0.42)
- ▲ モデル4(中間軸/長軸=0.56,短軸/長軸=0.23)
 - 衝突実験による破片の軸比やイトカワのボルダーの軸比と類似 Impact cratering (穏やかな衝突)=>Catastrophic disruption(激しい衝突) (短軸/長軸 => 低)
 - モデル3:Impact cratering!? モデル4:Catastrophic disruption!?

形状と回転状態

$$\psi = atan2 \left(\sqrt{\frac{I_i \left(I_s - \frac{M^2}{2E} \right)}{I_s - I_i}} \operatorname{sn}\tau, \sqrt{\frac{I_s \left(\frac{M^2}{2E} - I_l \right)}{I_s - I_l}} \operatorname{dn}\tau \right)$$

$$\frac{P_{\psi}}{P_{\phi}} \ge \sqrt{\frac{(L_l^2 + L_s^2)(L_i^2 + L_s^2)}{(L_l^2 - L_s^2)(L_i^2 - L_s^2)}},$$
$$\frac{P_{\psi}}{P_{\phi}} > 1$$

(Landau and Lifshitz 1976, Samarasinha and A'Hearn 1991,Kaasalainen 2001)

• ライトカーブ (可視測光)

(写真:東京大学、阿南市立科学館、なよろ市立天文台、兵庫県立大学)

木曽 1.05 m + Tomo-e Gozen カメラ/ ろ市立人又占、共庫県立八子 美星スペースガードセンター(BSGC) 1.0 m/阿南市立科学センター 1.13 m /なよろ市立天文台 0.4 m

- 可視多色測光 (g', r', i', z'band)
 美星スペースガードセンター 1.0 m
- 近赤外多色測光 (*J*, *H*, *K*, band)
 西はりま天文台なゆた望遠鏡 2.0 m + NIC (近赤外 3 色同時カメラ)

m Year/Mon/Day (UT)	Geocentric distance (AU)	Phase angle (°)	Sky motion $''/min$
2017/10/9.4578 - 9.4998	0.011 - 0.010	31.4 - 31.5	4.16 - 4.54
2017/10/10.4029 - 10.5808 2017/10/11.4283 - 11.6130	0.007 - 0.0064 0.0032 - 0.0025	33.3 - 34.1 38.0 - 40.7	6.77 - 9.36 28.17 - 43.24

形状と回転状態

入力値 観測結果

三軸不等楕円剛体の運動解析

• 8.47分と12.25分のどちらが自転周 期、歳差周期であるか?

小惑星を三軸不等楕円剛体とみな して、解析的に形状や回転状態を 推定

オイラー角 θ, φ, ψで剛体 の運動を記述。

三軸不等剛体の運動解析

長軸回転モード

短軸回転モード

 $I_i < \frac{M^2}{2E} \le I_s$