Real-Time Identification of LEO Objects in the Tomo-e Gozen Camera Images with a Multi-GPU System

Manuel Cegarra Polo, Toshifumi Yanagisawa, Hirohisa Kurosaki 日本学術振興会 海外特別研究員 研究開発部門 第二研究ユニット JAXA Chofu

年度プラネタリーディフェンス・シンポジウム 14-15 February 2022

### Introduction

#### BACKGROUND

- LEO objects will appear as **streaks in images when tracking at sidereal rate**, with lengths depending on object elevation and camera exposure time.
- In the literature, there are many research works aimed to detect streaks, mainly focused in the **detection sensitivity**, where only a few of them focus on the **processing speed**:
  - (1) 4096 x 4096 (16.7 Mpixels) -> 3.19 sec GPU
  - (2) 1024 x 1024 (1.05 Mpixels) -> 3 sec CPU
  - (3) 2049 x 2047 (4.2 Mpixels) -> 2 7 min CPU
  - (4) 2048 x 2048 (4.2 Mpixels) -> 13 sec CPU
- **Reduction of processing speed** can be beneficial when:
  - There is a massive amount of images to process.
  - Orbital parameters of detected objects are sent to follow-up observation stations in next LEO object pass.

### OUR SOLUTION

- We developed a real-time processing system to detect and identify objects as streaks, based in heterogenous computing (mixed multi CPU-GPU), in two variants (standard and high sensitivity):
  - STANDARD: 18 x 2000 x 1128 (40.6 Mpixels) -> 0.3 sec (detection); 3.3 sec(including identification)
  - HIGH: 18 x 2000 x 1128 (40.6 Mpixels) -> 3.7 sec (detection); 6.7 sec(including identification)
- We achieved **Real-Time performance** (file processed before next file arrives): 18 frames of 2000 x 1128 pixels with 0.5 sec exposure time = 9 sec per file (without considering nudging time)

(1) Diprima, F et al., T. 2017, 7th European Conference on Space Debris, Darmstadt, Germany

(2) Hickson, P. 2018, Adv. Space Res., 62, 3078-3085

(3) Cvrcek V. et al. 2019, 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5, 498-509, Prague (4) Virtanen, J. et al. 2016, Adv. Space Res., 57, 1607-1623

# **GPU** Technology

#### **IMPORTANT CONCEPTS**

- GPU technology is well suited for image processing of massive number of pixels (memory) in parallel (same operations).
- Heterogeneous computing: systems that use several types of processors or cores. Current workstations and high performance computers include many CPU cores and a high number of GPU cores.
- Nowadays there exist mature NVIDIA CUDA GPU libraries for image processing and algebra to help in development: opency, cublas, magma, etc.





GPU002 2 x NVIDIA Ampere A6000 10752 CUDA CORES each

Our Top Level Parallel Processing heterogeneous CPU-GPU computing system

STREAKS TABLE (CSV)

### Process steps: Preprocessing

- Includes 2 substages:
  - **Removal of stars:** (variation of star removal method\*) to avoid detection of false positives of streaks created by diffraction spikes of bright stars or other astronomical objects.
  - Binarization: global or local (adaptive thresholding).



Substages of preprocessing step



Diffraction spikes of bright star (Tomo-e camera)



Globular cluster (Tomo-e camera)

(\*) Yanagisawa, T. Et al. Automatic Detection Algorithm for Small Moving Objects, PASJ, Vol. 57, Issue 2, 2005, Pages 399–408

# Process steps: Detection

### STANDARD SENSITIVITY (HOUGH TRANSFORM\*)

- CUDA OpenCV implementation of the PPHT (Progressive Probabilistic Hough Transform) -> Fast, detection of segments instead of lines
- Longest of each group of segments of len. > 200 pixels.



Theoretical principle of Hough Transform source:https://commons.wikimedia.org/w/index.php?curid=74745305



\* Hough, P.V.C. 1962, U.S. Patent 3069654

### HIGH SENSITIVITY (STACKING METHOD\*\*)

- Pixel binary values (0/1) are accumulated over segments of length 200 pixels.
- Casefile includes 1128 possible directions.
- Cases over threshold (~130/200) are candidates.



\*\* Detection of Small GEO Debris by Use of the Stacking Method", Yanagisawa T. et al, T. Japan Soc. Aero. Space Sci., V.44, No. 146, pag. 190-199, 2005

## Process steps: Identification

- Includes 3 substages:
  - Astrometry: Obtention of astronomical coordinates (RA, Dec) of each streak end.
  - Identification: coordinates ends are compared with those of known objects of a space-track.org database of 29,082 entries, based in the SGP4 orbital propagation or their initial TLE coordinates.
  - **Differential Photometry:** Only to characterize system sensitivity, not intrinsic to the object, and not included in the main loop process.



- Elliptical area surrounding the detected streak to compute the total brightness.
- 2 Circular areas surrounding both ends of the detected streak, that defines the error with the TLE database of objects comparison.
- 3 **Trajectory of real object** in the database obtained through the propagation of its TLE data with SGP4 algorithm.
- 4 **photometric stars** for differential photometry.
- 5 (RA,Dec) coordinates of object from database corresponding to the timestamps of start and end of camera integration time. if these points are encompassed by the circular areas (2), the streak is associated with the candidate object.

### Results: Experimental Set-up

#### TOMO-E CAMERA AT 1M SCHMIDT TELESCOPE AT KISO OBSERVATORY

| FITS files:                               | posure time                         |              |  |  |  |  |
|-------------------------------------------|-------------------------------------|--------------|--|--|--|--|
|                                           | 2000 x 1128 x 18 ~ 40.61 Mpixels ~  | 162.4 Mbytes |  |  |  |  |
| Data rate:                                | ~ 1.7 Tbytes / hour                 |              |  |  |  |  |
| Sensor model:                             | Canon 35MMFHDXM                     |              |  |  |  |  |
| Sensor type:                              | CMOS Front illuminated              |              |  |  |  |  |
| Pixel size:                               | 19 µm/pixel                         |              |  |  |  |  |
| Pixel scale:                              | 1.198 arcsec/pixel                  |              |  |  |  |  |
| No. sensors:                              | 84                                  |              |  |  |  |  |
| OBSERVATION SE                            | <u>.</u>                            |              |  |  |  |  |
| STANDARD SENSI                            | TIVITY: 21,084 FITS files (2 hours) | ~3.4 TB      |  |  |  |  |
| HIGH SENSITIVITY 2.373 FITS files ~386 GB |                                     |              |  |  |  |  |



Layout of CMOS sensors in Tomo-e Gozen camera. 1.198 arcsec/pix source: <u>www.ioa.s.u-tokyo.ac.jp/tomoe</u>



35 mm Full HD 2000 x 1128 pixels source: <u>www.ioa.s.u-tokyo.ac.jp/tomoe</u>

# Results: Sample Images





Detected by Standard and High Sensitivity Methods



Detected **ONLY** by High Sensitivity Method

### Results: Performance

#### STANDARD SENSITIVITY (HOUGH METHOD)

detection time: ~100 ms per FITS file (18 frames) 12-130 times faster than CPU REAL-TIME (4xGPU): 3.3 s < 9 s Detection rate: ~0.5% Identification rate: 83% Min. apparent magnitude: +11.3

#### HIGH SENSITIVITY (STACKING METHOD)

detection time: ~14 s per FITS file (18 frames) 60 times faster than CPU REAL-TIME (4XGPU): 7 s < 9 s Detection rate: ~ 5% Identification rate: ~66%. Min. apparent magnitude: >+11.3







Comparative speed performance at CPU vs. GPU vs. 4xGPU of Hough and Stacking Detection algorithms

Photometry of 35 objects detected. NC are Non-Catalogued Objects. 8 objects where not measured as one of their ends was out of bounds of the image sensor (Hough Method)

## Results: Output table

| subframe | file_name                       | positives | max_x | max_y | min_x | min_y    | max_RA       | max_Dec      | min_RA       | min_Dec      | <br>UTC_begin                  | UTC_end                    | TLE_candidate         | NORAD ID |
|----------|---------------------------------|-----------|-------|-------|-------|----------|--------------|--------------|--------------|--------------|--------------------------------|----------------------------|-----------------------|----------|
| 7        | rTMQ1202010180038009611_7.fits  | 386984    | 1675  | 1055  | 1702  | 988 · ·  | 17:48:08.792 | -07:10:54.57 | 17:48:10.992 | -07:09:35.11 | <br>2020-10-18 09:22:34.165882 | 2020-10-18 09:22:34.665786 | SATCOM K2 R/B(PAM-D2) | 16295    |
| 8        | rTMQ1202010180038009611_8.fits  | 694382    | 1720  | 983   | 1768  | 740 · ·  | 17:48:12.434 | -07:09:29.32 | 17:48:16.424 | -07:04:40.70 | <br>2020-10-18 09:22:34.665786 | 2020-10-18 09:22:35.165690 | SATCOM K2 R/B(PAM-D2) | 16295    |
| 9        | rTMQ1202010180038009611_9.fits  | 1109989   | 1759  | 780   | 1823  | 508 · ·  | 17:48:15.680 | -07:05:28.20 | 17:48:20.963 | -07:00:05.25 | <br>2020-10-18 09:22:35.165690 | 2020-10-18 09:22:35.665594 | SATCOM K2 R/B(PAM-D2) | 16295    |
| 10       | rTMQ1202010180038009611_10.fits | 888185    | 1817  | 545   | 1884  | 286 · ·  | 17:48:20.461 | -07:00:49.21 | 17:48:25.970 | -06:55:41.79 | <br>2020-10-18 09:22:35.665594 | 2020-10-18 09:22:36.165498 | SATCOM K2 R/B(PAM-D2) | 16295    |
| 11       | rTMQ1202010180038009611_11.fits | 1914      | 1878  | 406   | 1889  | 200 · )  | 17:48:25.418 | -06:58:04.44 | 17:48:26.421 | -06:53:59.56 | <br>2020-10-18 09:22:36.165498 | 2020-10-18 09:22:36.665402 | SATCOM K2 R/B(PAM-D2) | 16295    |
| 13       | rTMQ1202010180038009611_13.fits | 7985      | 1520  | 874   | 1524  | 433 · ·  | 17:47:56.527 | -07:07:17.89 | 17:47:57.127 | -06:58:33.38 | <br>2020-10-18 09:22:37.165306 | 2020-10-18 09:22:37.665210 | SATCOM K2 R/B(PAM-D2) | 16295    |
| 14       | rTMQ1202010180038009611_14.fits | 1         | 1567  | 399   | 1567  | 399 · ·  | 17:48:00.582 | -06:57:53.33 | 17:48:00.582 | -06:57:53.33 | <br>2020-10-18 09:22:37.665210 | 2020-10-18 09:22:38.165114 | SATCOM K2 R/B(PAM-D2) | 16295    |
| 13       | rTMQ1202010180038009612_13.fits | 10        | 1668  | 1127  | 1688  | 1004 · · | 17:48:09.131 | -06:24:09.55 | 17:48:10.763 | -06:21:43.31 | <br>2020-10-18 09:22:37.165306 | 2020-10-18 09:22:37.665210 | SL-24 R/B             | 27610    |
| 8        | rTMQ1202010180038009913_8.fits  | 7         | 9     | 505   | 1860  | 250 · ·  | 18:13:37.240 | -12:24:43.90 | 18:16:07.676 | -12:19:56.09 | <br>2020-10-18 09:23:46.185148 | 2020-10-18 09:23:46.685052 | no match              | no match |
| 2        | rTMQ1202010180038009914_2.fits  | 543       | 595   | 620   | 372   | 243 · ·  | 18:14:26.391 | -11:39:02.85 | 18:14:08.548 | -11:31:32.63 | <br>2020-10-18 09:23:43.185724 | 2020-10-18 09:23:43.685628 | no match              | no match |
| 3        | rTMQ1202010180038009914_3.fits  | 193       | 838   | 1024  | 614   | 622 · ·  | 18:14:45.858 | -11:47:05.34 | 18:14:27.928 | -11:39:05.36 | <br>2020-10-18 09:23:43.685628 | 2020-10-18 09:23:44.185532 | no match              | no match |
| 13       | rTMQ1202010180038010044_13.fits | 332788    | 1597  | 407   | 1464  | 200 · )  | 18:02:32.141 | -11:56:49.87 | 18:02:21.646 | -11:52:41.15 | <br>2020-10-18 09:24:09.086756 | 2020-10-18 09:24:09.586660 | no match              | no match |
| 14       | rTMQ1202010180038010044_14.fits | 1676705   | 1940  | 953   | 1740  | 635      | 18:02:59.216 | -12:07:46.06 | 18:02:43.423 | -12:01:23.83 | <br>2020-10-18 09:24:09.586660 | 2020-10-18 09:24:10.086564 | no match              | no match |
| 15       | rTMQ1202010180038010044_15.fits | 99026     | 18    | 1121  | 1897  | 855 · ·  | 18:00:23.118 | -12:10:27.45 | 18:02:55.858 | -12:05:48.60 | <br>2020-10-18 09:24:10.086564 | 2020-10-18 09:24:10.586468 | no match              | no match |
| 8        | rTMQ1202010180038010215_8.fits  | 22816     | 1781  | 1016  | 1990  | 985 · ·  | 18:25:08.817 | -03:33:27.09 | 18:25:25.428 | -03:32:51.57 | <br>2020-10-18 09:24:55.598711 | 2020-10-18 09:24:56.098615 | no match              | no match |
| 8        | rTMQ1202010180038010825_8.fits  | 235       | 540   | 245   | 747   | 200 · )  | 18:07:40.656 | +03:43:30.63 | 18:07:57.109 | +03:44:24.10 | <br>2020-10-18 09:27:07.480134 | 2020-10-18 09:27:07.980038 | no match              | no match |
| 4        | rTMQ1202010180038011014_4.fits  | 11        | 375   | 1061  | 324   | 1018     | 18:23:12.382 | +10:29:09.58 | 18:23:08.275 | +10:30:00.77 | <br>2020-10-18 09:27:54.495094 | 2020-10-18 09:27:54.994998 | no match              | no match |

Fragment of output table with the High Sensitivity method

| File ID               | $\rm rTMQ1202010180038024725.fits$ |               |  |  |  |
|-----------------------|------------------------------------|---------------|--|--|--|
| Subframe              | 0                                  | 1             |  |  |  |
| length(arcsec)        | 316.8                              | 316           |  |  |  |
| slope                 | -39.2                              | -39           |  |  |  |
| $RA_1$                | 49:53.9                            | 50:17.2       |  |  |  |
| $\mathrm{Dec}_1$      | +48:35:40.63                       | +48:39:10.14  |  |  |  |
| $RA_2$                | 50:18.0                            | 50:41.4       |  |  |  |
| $\mathrm{Dec}_2$      | +48:39:05.58                       | +48:42:33.49  |  |  |  |
| UTC begin             | 22:54.9                            | 22:55.4       |  |  |  |
| UTC end               | 22:55.4                            | 22:55.9       |  |  |  |
| TLE candidate         | ORBCOMM FM 36                      | ORBCOMM FM 36 |  |  |  |
| NORAD ID              | 25984                              | 25984         |  |  |  |
| RA rate $(arcsec/s)$  | -491.2                             | -491.2        |  |  |  |
| Dec rate $(arcsec/s)$ | 400.1                              | 397.7         |  |  |  |
| Streak counts         | 2190944.0                          | 2196086.2     |  |  |  |
| Instr Mag             | -15.9                              | -15.9         |  |  |  |
| Object Mag            | 8                                  | 8             |  |  |  |
| Mag residuals         | 0.021                              | 0.021         |  |  |  |

Details for one FITS file

### Conclusions

- We developed a real-time processing system to detect and identify objects as streaks, based in heterogenous computing (mixed multi CPU-GPU), in two variants (standard and high sensitivity), with Real-Time performance.
- CPU-GPU heterogeneous computing is a convenient solution for the need of big data processing in SSA and Astronomy.
- Plan to **shorten Postprocessing stage** time through GPU implementation.
- Next stage: Integration and installation in existing SSA observatories under consideration.

#### **ACKNOWLEDGEMENTS**

- This research is funded by the fellowship program of JSPS.
- Astronomical images were kindly provided by Tomo-e Gozen Team of University of Tokyo.

### --- どうもありがとうございました ---